
Proposed Data Model for the Next Version of the Synthetic Biology
Open Language
Nicholas Roehner,†,* Ernst Oberortner,‡ Matthew Pocock,§ Jacob Beal,∥ Kevin Clancy,⊥ Curtis Madsen,§

Goksel Misirli,§ Anil Wipat,§ Herbert Sauro,# and Chris J. Myers∇

†Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States
‡Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts, United States
§School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
∥Raytheon BBN Technologies, Cambridge, Massachusetts, United States
⊥Life Technologies, Carlsbad, California, United States
#Department of Bioengineering, University of Washington, Seattle, Washington, United States
∇Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, United States

ABSTRACT: While the first version of the Synthetic Biology
Open Language (SBOL) has been adopted by several academic
and commercial genetic design automation (GDA) software
tools, it only covers a limited number of the requirements for a
standardized exchange format for synthetic biology. In
particular, SBOL Version 1.1 is capable of representing DNA
components and their hierarchical composition via sequence
annotations. This proposal revises SBOL Version 1.1, enabling
the representation of a wider range of components with and without sequences, including RNA components, protein
components, small molecules, and molecular complexes. It also introduces modules to instantiate groups of components on the
basis of their shared function and assert molecular interactions between components. By increasing the range of structural and
functional descriptions in SBOL and allowing for their composition, the proposed improvements enable SBOL to represent and
facilitate the exchange of a broader class of genetic designs.

KEYWORDS: SBOL, synthetic biology, standards, modular design

The Synthetic Biology Open Language (SBOL)1 is an
emerging data exchange standard for synthetic biology

with growing support among genetic design automation (GDA)
software tools.2−13 SBOL has been developed by various
members of the synthetic biology community to document
DNA components for the primary purpose of engineering genetic
designs. Unlike existing standards that were originally conceived
for documenting naturally occurring genetic sequences, such as
the FASTA14 and GenBank15 formats, SBOL can be used to
document partial genetic designs and to recursively annotate the
sequences of DNA components with subcomponents in a
hierarchical fashion. These capabilities of SBOL address the
iterative, modular character of engineering design in a way that
current standards for genetic sequences neglect. Furthermore,
SBOL is an extensible standard that can be adapted to meet
the evolving needs of the synthetic biology community, such as
connecting structural, sequence-oriented descriptions of genetic
designs with descriptions of their function. Without standards
that meet the need for dual representation of genetic structure
and function, there can be no exchangeable basis for design
automation in synthetic biology,16 a paradigm that has been
applied to great success in electrical and computer engineering.
While a host of GDA tools exist for applications such as bio-

chemical modeling and simulation,13,17−21 sequence editing and

optimization,2,10,22,23 design composition,3,4,8,12,24,25 and more
recently genetic technology mapping,5,26−29 not all of these
tools use publicly available standards to represent data and
none of them use standards to tightly couple descriptions of
genetic structure and function. In order for GDA tools to
facilitate interdisciplinary collaboration and exchange of genetic
designs, they must use standards that represent both genetic
structure and function, even if individual tools only focus on one
aspect of genetic design. Without such standards, GDA tools
with different applications cannot exchange a single design,
thus potentially damaging the reproducibility of a designer’s
intent. In addition, GDA tools that handle both structural
and functional aspects of genetic designs cannot use a single
standard, thus making it more difficult to document how the
structure of a genetic design affects its function and vice versa.
The current SBOL standard, Version 1.1,1,30 is primarily

capable of representing the structural aspects of genetic designs.
To serve as an effective medium for the computational exchange of
genetic designs, SBOL must be extended to increase the scope of

Special Issue: SEED 2014

Received: March 7, 2014
Published: June 4, 2014

Research Article

pubs.acs.org/synthbio

© 2014 American Chemical Society 57 dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−71

pubs.acs.org/synthbio


genetic structural and functional information that it can encode
and to provide a basis for its use in composing the structural and
functional layers of genetic designs. The SBOL data model
proposed in this paper provides a roadmap for addressing three of
the most pressing needs for expanding SBOL Version 1.1. The
first need is the ability to structurally represent components of a
genetic design other than DNA components, the second need is
the ability to provide functional representations of these
components, and the third need is a composition framework for
connecting descriptions of genetic struture and function. As long
as these capabilities remain outside the scope of SBOL, the SBOL
standard is not sufficiently expressive to provide hierarchical,
modular representations of both the intended structure and
function of genetic designs.
This paper reviews the current capabilities of SBOL Version

1.1 before describing a proposed data model that was recently
presented at the SBOL 10 workshop held at the University of
California, Berkeley and voted on as a starting point for the
next version of SBOL. It is important to emphasize that this
data model does not represent the final, community-approved
specification for the next version of SBOL. Rather, this data
model is a proposal that draws from both discussions within the
SBOL community and the original contributions of the authors
of this paper. It is an intermediate result in a larger develop-
ment process, one in which feedback is being gathered from
the synthetic biology community at large in order to reflect,
fulfill, and standardize the data exchange requirements of the
community in the next version of the SBOL standard.

■ SBOL VERSION 1.1

Figure 1 illustrates an example of the current capabilities of SBOL
Version 1.1 using symbols taken from the SBOL Visual standard.31

In this example, the DNA component for a genetic toggle switch32

is hierarchically composed from a TetR-repressible gene and a
LacI-repressible gene, which are in turn composed from the pTet
promoter, the cLacI coding sequence (CDS), ribosome binding
sites (RBS), terminators, the pLac promoter, and the cTetR CDS.

In the case of the toggle switch component, one of its subcom-
ponents (the TetR-repressible gene) is located on its negative/
reverse complement strand.
A more detailed SBOL representation of the TetR-repressible

gene of the genetic toggle switch is shown in Figure 2 using a
Unif ied Modeling Language (UML)34 diagram. DNA components
are the core of SBOL Version 1.1 and represent abstractions
of a particular DNA sequence for engineering design. Each DNA
component has a uniform resource identif ier (URI) 35 (a URI is
used by software and databases to uniquely identify objects across
the World Wide Web) and a display ID and can have at most one
name, description, and DNA sequence. Each DNA component
can also have one or more types, at least one of which must refer
to a term from the Sequence Ontology (SO).36 An ontology is a
controlled vocabulary that captures terms and relationships
between terms from a specific knowledge domain, thereby
enabling machine reasoning over the domain.37 In the case of
the SO, the captured knowledge domain is the annotation of
biological sequences with sequence features. The central DNA
component shown in Figure 2 is a TetR-repressible gene that
has the display ID “UU_001,” a type of “gene”, and a DNA
sequence that is partially shown in the figure.
DNA components can be composed hierarchically using

sequence annotations that indicate their absolute or relative
position on the DNA sequence of their parent DNA component.
Each sequence annotation can have a single pair of bioStart
and bioEnd integers or a precedes relation to another sequence
annotation. When present, the bioStart and bioEnd integers
bound the position of a subcomponent on the DNA sequence of
the parent DNA component. When one or more subcomponents
do not have a DNA sequence, however, a complete DNA
sequence cannot be assigned to the parent DNA component and
the positions of its subcomponents cannot be exactly specified by
its sequence annotations. In this case, a partial genetic design can
be specified using precedes references between sequence
annotations to indicate the relative positions of their subcompo-
nents. This capability is necessary to satisfy the iterative nature of
engineering, in which some details of a design cannot be specified

Figure 1. Hierarchical composition of the DNA component for a genetic toggle switch in SBOL Version 1.1. Each grouping of subcomponent
symbols along a solid line represents a single composite DNA component. Of these symbols, each bent arrow represents a promoter, each semicircle
represents a RBS, each box arrow represents a CDS, and each T-shape represents a terminator (see the SBOL Visual standard31). This figure was
partly constructed using Pigeon,33 an SBOL Visual-compliant tool.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7158



immediately and must be revisited later in the design cycle.
Furthermore, each sequence annotation can have either a ‘+’ or
“−” character to indicate whether its subcomponent is located
on the positive or negative strand of its parent DNA component.
The TetR-repressible gene shown in Figure 2 has four sequence
annotations that specify that this gene is composed of four DNA
components representing a promoter, RBS, CDS, and terminator
in that order.
The general UML data model for SBOL Version 1.1 is

shown in Figure 3. It includes one additional class, Collection,
which is a container for DNA components having common
characteristics. For example, a collection could be the result of
querying a database to find all promoter DNA components.
Currently, SBOL Version 1.1 does not support the specifica-
tion of non-DNA components, such as the LacI and TetR
transcription factor (TF) proteins of the genetic toggle switch.
In addition, SBOL 1.1 does not support functional descrip-
tion of the toggle switch as a whole, such as the assertion of
qualitative regulatory interactions between its components, or
linking to mathematical models that provide information on
its dynamic function in a particular organism. One of the goals
of the proposed data model is to overcome each of these
limitations.

■ RESULTS AND DISCUSSION

The primary goal of the proposed data model is to make SBOL
a more comprehensive standard for genetic design. Since
synthetic biology encompasses research into a broad range of
entities and materials, SBOL must grow to represent a similarly
broad range of structural components for genetic design. In
order to more fully support the representation of genetic
structure, the proposed data model generalizes the DNA
component class of SBOL Version 1.1 to represent components
with and without sequences. As a consequence, this data model
can be used to represent RNA components, such as mRNA,
tRNA, and small interfering RNA (siRNA),38 as well as protein
components, such as transcription factors (TF) and enzymes.
Furthermore, the proposed data model can be used to represent
potentially nongenetic components of a design, such as environ-
mental factors, small molecules, molecular complexes, non-
biological polymers, and even light.
Because synthetic biology is increasingly concerned with the

intended function of genetic designs, SBOL must also be
extended to support minimalistic, qualitative representations of
genetic function and to reference more detailed, quantitative
representations written in specialized, external standards. To
meet these needs, the proposed data model introduces classes

Figure 2. SBOL Version 1.1 UML for a TetR-repressible gene that expresses the TF protein LacI. Sequence annotations are placed inside the DNA
component UU_001 to show that they are owned by the component. These sequence annotations indicate that four DNA subcomponents are
located side by side on UU_001’s DNA sequence, including the promoter BBa_R0040, the RBS BBa_0034, the CDS BBa_C0012, and the
terminator BBa_0015. Accordingly, the DNA sequence of UU_001 is the concatenation of the sequences of its subcomponents.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7159



for functional modules, molecular interactions, and mathematical
models. Examples of functional modules include genetic logic
gates, oscillators, sensors, and signaling cascades, while examples of
molecular interactions include transcription, translation, activation/
repression, noncovalent binding, and phosphorylation.
Finally, in order to be more useful for the purpose of

engineering design, the proposed data model enables the
hierarchical composition of separate yet connected descriptions
of genetic structure and function. The data model addresses
this need by introducing classes for instantiation and port
mappingtwo abstract, proven, and well-established concepts
borrowed from the domain of electrical and computer
engineering. As explained later on, instantiation allows the
creation of a modular hierarchy by incorporating one or
more copies of a subdesign in a composite design, while port
mapping allows the specification of connections between

designs by asserting the equivalence of elements within these
designs. These concepts simplify the process of creating a large,
complex design by facilitating the reuse of previous designs in
its construction, factoring out reoccurring design patterns that
would otherwise be redundant, and splitting a design into
multiple distinct layers that warrant separate consideration.
As an example, consider the design for a genetic toggle

switch shown in Figure 4. The proposed data model captures
not only this design’s structure but also its basic function.
First, generalized components allow the representation of RNA
components such as the mRNA coding for TetR, protein
components such as TetR and LacI, and small molecules such
as IPTG. Next, interactions can be specified between these
components, such as the transcription of the CDS cTetR to
TetR mRNA and the latter’s translation to TetR protein. Other
examples include the repression of the pLac promoter by LacI

Figure 4. Design for the genetic toggle switch that captures its qualitative structure and function. The design consists of three functional modules in
the form of a composite toggle switch module that contains connected copies of a TetR inverter module and a LacI inverter module. The LacI
inverter module contains copies of a composite DNA component for the LacI-repressible gene, a TF protein component for LacI (red circle), a TF
protein component for TetR (orange circle), an mRNA component for TetR (orange rectangle), a small molecule component for IPTG (pink
circle), and a molecular complex component for LacI bound to IPTG. This module asserts a variety of molecular interactions between its contained
components (solid arrows), including the repression of pLac by LacI, transciption of cTetR to TetR mRNA, translation of TetR mRNA to the TetR
TF, and noncovalent binding of LacI to IPTG. While these modules allow different parts of the design to be treated as “black boxes” that have most
of their contents ignored (see the TetR inverter), the ports on these modules allow connections between them (dashed lines). For example, the
toggle switch is connected to the LacI inverter through mapping of the latter’s input port to copies of LacI contained by both modules. In turn, the
TetR inverter is connected to both the toggle switch and LacI inverter through mapping of its output port to the copy of LacI in the toggle switch.

Figure 3. UML class diagram for SBOL Version 1.1,30 consisting of the Collection, DNA Component, DNA Sequence, and Sequence Annotation
classes. Each data object that belongs to these classes contains a variety of data fields, including strings of characters that identify, name, and describe
the object and URIs that type and uniquely identify the object. A white diamond arrow indicates that objects of one class refer to and aggregate
objects of other classes, while a black diamond arrow indicates ownership as well. For example, if a DNA component is deleted, then all of its
sequence annotations are deleted, since they are owned by that DNA component. The same is not true of a DNA component and its DNA sequence,
since another DNA component may share the same sequence.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7160



and the binding of LacI by IPTG to form a complex. In turn,
these components and their interactions can be grouped into
functional modules, such as a LacI inverter. Finally, these
modules can be instantiated as part of larger modules, such as
the instantiation of the TetR inverter and LacI inverter to form
the genetic toggle switch. The points of connection between
modules are specified using ports, while the connections between
modules are established using port maps. The rest of this section
describes each of these new features in greater detail.
Structural Representation. To support an increased range

of structural representation, the proposed data model generalizes
DNA components to sequence components and adds generic
components to capture components without a sequence. Figure 5
presents a UML object diagram that presents the components for
one-half of the genetic toggle switch, including sequence com-
ponents that are engineering abstractions of DNA, RNA, and
protein, and generic components that represent small molecules
and molecular complexes. Of these components, only the LacI-
repressible gene and IPTG-LacI complex have any substructure.
In particular, the gene’s sequence is annotated with four other
sequence components of type “DNA,” while the complex is
composed of a generic component of type “small molecule” and a
sequence component of type “protein.”
Functional Representation. To address the need for

functional descriptions in SBOL, the proposed data model adds
classes for modules, interactions, and models. These classes
provide a firm basis for functional representation in SBOL without

going so far as to create a new standard for mathematically
modeling biology, as there already exist several established
languages for doing so, from the Systems Biology Markup
Language (SBML)39 to CellML40 and even MatLab.41 Rather,
these classes enable users of SBOL to group components that
function together, describe the basic qualitative interactions
between these components, and document references to standard
mathematical models that are external to SBOL and that provide
more detailed descriptions of component function. In other words,
a module gathers together a set of component instantiations, a set
of interactions between these component instantiations, and a set
of references to external models that are expected to be consistent
with the module’s interactions.
Figure 6 provides a UML example of the interactions

between the component instantiations of the LacI inverter
module of the genetic toggle switch. In this diagram, the
binding of LacI to IPTG is represented using a noncovalent
binding interaction that has three participants, including LacI
and IPTG participating as reactants and the IPTG-LacI complex
participating as a product. The repression of transcription at the
pLac promoter is represented using a repression interaction, with
LacI serving as the repressor participant and pLac serving as the
repressed participant. Lastly, the transcription and translation of
TetR are represented in this module using a single genetic pro-
duction interaction that abstracts away the presence of the inter-
mediate TetR mRNA. If this additional detail becomes necessary,
then a new module could be created that instantiates the same

Figure 5. UML example of components under the proposed data model, including components referenced by the LacI Inverter module of the
genetic toggle switch. “Comp” is short for “component” wherever it appears in this figure.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7161



components alongside a TetR mRNA component instantiation
and includes both transcription and translation interactions. In the
current example, the genetic production interaction has three
participants: pLac as a modifier, cTetR as a transcribed participant,
and TetR as a product. Finally, the module can reference a Model
object that points to an external model. In this example, the model
source file is “LacI_Inverter.xml”, it is written in the SBML
language, it is an ordinary dif ferential equation (ODE) model,
and it is to be used for simulation.
From a given set of interactions, different GDA tools can

derive different mathematical models at separate levels of
mechanistic detail. In the near future, the proposed data model
can be extended with the capacity to store data on measure-
ments and basic parameters, thereby providing a firmer foundation
for GDA tools to generate complementary mathematical models
that nevertheless conform to the same basic data set. This
capability is important because it enables function-oriented GDA
tools to perform different functional design tasks with respect to
the same genetic design.
Composition of Structure and Function. To enable the

hierarchical, modular composition of genetic structure and
function in SBOL, the proposed data model introduces classes

for instantiation and port mapping. An instantiation is a
documented reference to a specific component or module
that effectively serves as a distinct copy and can be composed
with other instantiations into a composite component or
module. Currently, the proposed data model includes
component instantiations and module instantiations. While
a module can only be instantiated by another module, a
component can be instantiated by either a module or another
component, depending on its intended use. When a component
is instantiated by another component, it is effectively referred to
as a structural entity for the purpose of physical composition.
When a component is instantiated by a module, on the other
hand, it is referred to as a functional entity for the purpose of
playing a role in an interaction.
In turn, ports and port maps enable connections between

composite components and modules. Currently, port mapping
serves two specific use cases related to the composition of
genetic designs. The first use case is to indicate with greater
fidelity how a module describes the function of a composite
component, namely by asserting that particular component
instantiations within the module are equivalent to particular
component instantiations within the component.

Figure 6. UML example displaying the interactions between the component instantiations in the LacI inverter module. In particular, there is an
interaction representing the noncovalent binding of IPTG with the LacI protein, an interaction representing repression of the pLac promoter by
LacI, and an interaction representing the production of TetR as coded for by the cTetR CDS and initiated by the pLac promoter. This module also
references an external mathematical ODE model written in SBML for detailed simulation.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7162



As an example of this use case, Figure 7 shows how one might
compose the structure and function for the LacI-repressible gene
of the genetic toggle switch. In this example, the LacI-repressible
gene and two of its subcomponents are to be composed with the
LacI inverter module, namely the pLac promoter and cTetR CDS.
In order to compose these components with the LacI inverter
module and indicate that it describes their behavior, they are
functionally instantiated inside the module. In addition, port maps
are placed on the functional instantiation of the LacI-repressible
gene to connect between its subcomponent instantiations and the
corresponding functional component instantiations in the module.
Doing so makes it clear which component instantiations in the
gene are being described by which component instantiations in the
module.
This use case is most relevant when there is reason to believe

that two structural instantiations of the same component
should function differently based on physical location or other
environmental context. For example, a polycistronic gene could
contain two copies of a CDS, with one copy experiencing
transcriptional repression due to its position downstream of
the first copy. To capture such a scenario, there would need to
be two functional component instantiations in a module that
participate in different interactions and are separately mapped
to the gene’s two structural component instantiations.
The second use case of port mapping is to connect modules

by asserting the equivalence of their component instantiations,
effectively sharing these instantiations between modules. Figure 8
demonstrates how the LacI and TetR inverter modules can be

composed into a toggle switch module using instantiation and
connected using port mapping. In this example, the output of the
LacI inverter is an input of the TetR inverter and vice versa. Also,
both inverters accept the instantiation of a small molecule
component as input, IPTG in the case of the LacI inverter and aTc
in the case of the TetR inverter.
The primary reason for distinguishing between components

and modules and port mapping between their instantiations is
to promote the reuse of components. When the structural and
functional layers of genetic design are kept separate, different
researchers can use the same component in different modules
to document its intended function for different engineering
tasks and under different environmental conditions.
Ultimately, the concepts of instantiation and port mapping

are not intended to directly represent biological reality. Rather,
they are abstract artifacts that engineers use to organize their
designs and enable reasoning over these designs by software.
Without these concepts, it is very difficult to introduce the
simplifying notions of hierarchy and modularity to genetic
design in a manner that is conducive to the application of
GDA software tools and the exchange of data between them.
As progress in synthetic biology continues and the scale of genetic
design becomes more ambitious, GDA tools that support
hierarchical, modular standards will be useful, if not necessary, for
managing the complexity of synthetic biological systems.

Examples. As a further demonstration of the utility of
the proposed data model, the next two subsections present
examples of designs for real-world synthetic biological systems

Figure 7. UML example of instantiating the LacI-repressible gene within the LacI inverter module. Port maps are used to indicate that the
component instantiations of the pLac promoter in the LacI-repressible gene and in the LacI inverter module are equivalent. Similarly, port maps are
used to indicate that the structural and functional component instantiations of the cTetR CDS are equivalent. “Comp” is short for “component”
wherever it appears in this figure.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7163



that it can represent. These include a RNA replicon expression
system42 and a regulatory cascade based on clustered regularly
interspaced short palindromic repeat (CRISPR) systems.
RNA Replicons. In this system, three different RNA replicons

based on the Sindbis virus43 are transfected into the same host.
Consequently, the expression of these replicons is modulated
via their competition for the same translation resources, in
a manner that is dependent on their relative initial dosages.
The expression of the payload of each individual replicon is
accomplished in two phases. In the first phase, the nonstructural
proteins (nsPs) at the 5′ end of the replicon are translated by the
host to form a replicase. In the second phase, the replicase
transcribes copies of the replicon, including shortened copies that
only contain the payload and are produced when the replicase
binds to the subgenomic promoter (SGP) at the end of the nsP
block. Lastly, the third phase concerns the translation of the
shortened copies, thereby expressing the payload (in this case, a
fluorescent protein) in the place of structural proteins that would
form the capsid of the virus.
As shown in Figure 9, the basic genetic structure and

function of the replicon expression system can be represented
using the proposed data model. In this design, an RNA
component with an unspecified payload sequence serves as a
structural template for the three RNA replicons. In turn, this
RNA component is instantiated within a module that serves as
a functional template for the replicons and asserts the key
interaction of the host translation resources with their payload
CDS. Finally, the mixed replicon expression system as a
whole is composed by instantiating three submodules, each of
which maps its fluorescent protein payload and CDS to the
appropriate ports on an instantiation of the generic replicon
expression module. This effectively documents that the mixed
replicon expression module contains three separate copies of
the generic replicon expression module, each with a different
fluorescent protein payload. While the initial dosages for each
replicon are outside the scope of the proposed data model,
they can still be captured as custom annotations on the mixed

expression module or within a mathematical model that is
referenced by the module via the SBOL Model class.

CRISPR Cascade. The second example is drawn from a
system originally constructed and presented by Kiani et al.44 In
this CRISPR-based regulatory cascade, transcriptional repression
is accomplished using catalytically inactive Cas9 protein
(Cas9m). Like many other TFs, Cas9m sterically blocks
transcription initiation, but unlike other TFs, it is targeted to
specific promoters via guide RNA (gRNA) molecules that allow
for easier generation of orthogonal regulators. In the present
example, there are two promoters that are serially repressed in
this manner but are targeted via different gRNA molecules.
More specifically, CRP-a is targeted by gRNA-a and initiates
transcription of gRNA-b, which is coexpressed with the fluores-
cent protein mKate as intronic gRNA (igRNA). In turn, CRP-b
is targeted by gRNA-b and initiates the transcription of EYFP.
Since gRNA-a is constitutively transcribed in this system, the
expression of gRNA-b and mKate are repressed and EYFP is
produced in relatively larger quantities.
Figure 10 demonstrates one possible way in which the

CRISPR cascade can be specified using the proposed data model.
In this design, there are four submodule instantiations, three of
which encompass a DNA component with an unspecified CDS
and an RNA or protein product. These submodules are connected
in series via port mapping so that the unspecified CDS and
product of one submodule are equivalent to the specified CDS
and product of the next submodule and the overall parent
CRISPR cascade module. The latter module also instantiates
DNA components that produce Cas9m and the activator TF
Gal4VP16, which are then mapped as inputs to the two modules
that represent CRISPR-based repression at CRP-a and CRP-b.
In this way, the CRISPR cascade module serves a common source
of regulators for any and all CRISPR-based modules that it
instantiates.

■ DISCUSSION

This paper presents a set of extensions to the SBOL Version 1.1
data model which, if adopted by the community, should

Figure 8. UML example of composing the LacI and TetR inverter modules into a toggle switch module. The LacI, IPTG, and TetR component
instantiations of the LacI inverter module are mapped to the equivalent component instantiations in the toggle switch module, as are the TetR, aTc,
and LacI component instantiations of the TetR inverter module. The end result is a composite toggle switch module that, if flattened into a
noncomposite module, would include a single copy of each of these component instantiations and their accompanying interactions (see Figure 6).
“Comp” is short for “component” wherever it appears in this figure.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7164



provide a means of expressing and composing genetic designs
exhibiting a wide range of structure and function. This data
model represents a conservative extension of the current model,
striking a balance between expressiveness and minimization of
complexity. In particular, this proposal avoids, to the extent
possible, either making representational commitments where
there is not yet scientific consensus or duplicating other
modeling and standardization efforts.
In order to test the utility of this new data model, a new

version of the Java library, libSBOLj, has been implemented and
is being utilized to construct the above-described use cases and
other genetic designs from the literature. In conjunction with
further discussions in the community, this experimentation will
hopefully allow for the resolution of any remaining details so
that a formal specification can be written and ratified by the SBOL
Developers Group. Once ratified, the specification becomes official
when at least two software tools have implemented the standard
and demonstrated the exchange of data.
Even if this proposal is accepted, there are still important

aspects of engineering genetic designs not yet captured by
SBOL. In particular, the proposed extensions to SBOL do not
explicitly address the complex relationship between environ-
mental context and its influence on the intended function of a
design. Such specifications can become quite important when
composing modules, as not all of them function correctly when
deployed in the same environment or host organism, nor are
they amenable to the same experimental techniques. Further-
more, the proposed data model does not capture protocols for
experiments or physical assembly of designs. More research is
necessary to identify the types of data related to context,
assembly, and experiments that can be incorporated into SBOL
and reasoned over by software. With these additions, SBOL will

be able to better facilitate the specification of genetic designs
and their deployment and testing in the lab.

■ METHODS

This section describes in detail the proposed data model for
the next version of SBOL. In order to provide a more com-
prehensive standard for design in synthetic biology, this data
model extends the range of genetic structure and function
that can be represented in SBOL by including more general
component classes and classes for modules, interactions, and
models. In addition, this data model enables the hierarchical,
modular composition of descriptions of genetic structure and
function by introducing the abstract concepts of instantiation
and port mapping from electrical and computer engineering.

Identified, Documented, and Collection. One minor
improvement made by the proposed data model is the creation
of two abstract classes, the Identified and Documented classes.
As shown in Figure 11, these classes enable more efficient
representation and implementation of SBOL by separating out
data fields that are common to many classes and placing them
into super classes that other classes may extend. The Identified
class contains two data fields. The first is a URI that serves to
identify the objects of any class that implements the Identified
class, in the same way that data objects are identified with URIs
in SBOL Version 1.1. The second is an annotation string that
may contain a user’s custom data that is not explicitly captured
by SBOL. This string must take the form of one or more
predicate-object pairs that adhere to the guidelines for the
Resource Description Framework (RDF)45 language in which
SBOL is written.
The Documented class contains three data fields: a display

ID, a name, and a description. The contents of these data fields

Figure 9. Mixed replicon expression module that instantiates three different replicon expression submodules, which in turn instantiate copies of a
generic replicon expression module. Port mapping is used to customize each copy of the generic expression module so that it contains a different
payload CDS and produces a different fluorescent protein. Port mapping is also used to indicate that these submodule instantiations share translation
resources.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7165



are identical to those of the same name in SBOL Version 1.1.
Note that the Documented class inherits from the Identified
class since, while all classes in SBOL are Identified classes, not
all of them are Documented classes, such as the Sequence class.
Rather, sequences are effectively documented by the sequence
components that abstract them for the purpose of engineering
design.
Finally, Figure 11 also contains an example of class from

SBOL Version 1.1 that is now documented: the Collection
class. Under the proposed data model, objects of this class can

contain one or more objects that inherit from the Identified
class. In other words, a collection may now contain one or
more SBOL objects of any class from the proposed data model.

Components. Under the proposed data model, DNA
components have been generalized to components with a
sequence, or sequence components. The Sequence Component
class captures previously unrepresented genetic components,
such as RNA and protein components, but is also sufficiently
general to represent nongenetic components with a sequence,
such as nonbiological polymers. In order to capture com-
ponents without a sequence, such as small molecules, molecular
complexes, and light, a Generic Component class has also been
introduced. As shown in Figure 12, both classes inherit from
an abstract Component class that may refer to one or more
subcomponent instantiations and must contain a type URI that
refers to a term from an appropriate ontology, such as Chemical
Entities of Biological Interest (ChEBI).46 This type URI
documents the basic sort of biochemical or physical entity
(for example, DNA) that a component abstracts for the
purpose of engineering design. The sequence type URIs of a
sequence component, on the other hand, are analogous to the
type URIs of a DNA component in SBOL Version 1.1 (see
Figure 3). When possible, the sequence type URIs are expected to
reference SO36 terms to clarify the role or nature of the sequence
that is abstracted by the component. For example, a sequence
component of type DNA may have a sequence type of “promoter”

Figure 10. CRISPR cascade module that instantiates four submodules and several components. In this example, port mapping is used to specify the
precise downstream components that are the outputs of each module.

Figure 11. UML diagram for the Identified, Documented, and
Collection classes of the proposed data model. Note that classes with
italicized names are abstract classes that are meant to be extended by
other classes and not used directly.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7166



or “terminator”, while a sequence component of type protein may
have a sequence type of “binding site” or “protease site.”
Similar to a DNA component in the SBOL Version 1.1 data

model, a sequence component can refer to sequence annota-
tions to document the absolute or relative positions of sub-
component instantiations along its sequence. Unlike SBOL
Version 1.1, sequence annotations do not directly refer to
subcomponents but rather to instantiations or usages of these
subcomponents that may be exposed via ports and mapped to
other component instantiations for the purpose of design
composition. Finally, a sequence component can refer to an
object of the Sequence class that contains a string of characters
encoding its elements. A sequence’s string encoding must
adhere to the IUPAC codes for the types of sequence components
that refer to the sequence. For example, a sequence that is referred
to by DNA components should contain a string of IUPAC-
approved characters47 that represent different nucleotides.
While this data model can be further extended by dividing

sequence components into DNA, RNA, and protein components
and adding data structures for small molecules and environmental
factors, care must be taken to avoid creating a data model that is
overly refined. Such a data model would have many classes, but
no data-specific reason to distinguish between them. In the case
of DNA, RNA, and protein components, however, there may be
near-term reasons to distinguish among them, such as the different
elements that make up their sequences and the single-strandedness
of protein components, reasons that restrict the contents of the
proposed Sequence and Sequence Annotation classes.
The alternative approach is to supplement the proposed data

model with validation rules. For example, rules for checking
that sequence components of type “protein” are only annotated
with other sequence components of type “protein,” that the
orientation of their sequence annotations is always set to
“inline,” and that their sequences only contain characters taken
from the IUPAC amino acid code. As the proposed data model
continues to be implemented for testing, the SBOL community
intends to explore both approaches.
Structural Instantiation. The structural composition of

components is enabled through component instantiations.

Under the SBOL Version 1.1 data model, composite DNA
components are composed by annotating their sequences with
other DNA components. As shown in Figures 12 and 13, this
composition pattern is also true under the proposed data
model, but the Sequence Annotation class now refers to an
object of the Component Instantiation class, thereby explicitly
documenting that a sequence annotation positions a particular
instance or usage of a component, rather than the component
itself. This distinction is necessary to allow different copies of a
component to be referred to and treated differently on the basis
of their physical location or other environmental context. In
addition, by generalizing the concept of component instantia-
tion, the proposed data model allows generic components
without a sequence to be composed from instances of other
components.

Modules and Module Instantiations. Beyond the
component-based representation of genetic structure in the
proposed data model, modules are used to group components
that work together to provide an intended function. As displayed

Figure 12. UML diagram for the proposed generalized Component classes. Since Generic Component and Sequence Component inherit from the
abstract Component class, objects belonging to these classes can aggregate one or more objects that belong to the Port and Component Instantiation
classes. Sequence components may additionally aggregate one or more objects of the Sequence Annotation class and up to one object of the
Sequence class. In turn, a sequence annotation can refer to a component instantiation to effectively position it on the sequence of its parent sequence
component.

Figure 13. UML diagram for the proposed Component Instantiation
class. As an Instantiation class object, a component instantiation is
allowed to aggregate port maps to connect any ports on the
component that it instantiates.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7167



in Figure 14, the Module class forms the hub for functional
description of genetic designs. A module aggregates zero or more
component instantiations, module instantiations, interactions,
models, and ports. A component instantiation inside a module
refers to a component as a functional entity for the purpose of
playing a role in an interaction (described in more detail below).
In this way, a module instantiates components that work together
to perform an intended function.
Module instantiations (see Figure 15) enable the composi-

tion of modules from other modules. As described later on, the

connection of the module instantiations within these modules
is accomplished via ports and port mapping.
Ports and Port Maps. Connections between instantiations

are achieved using ports and port maps. As depicted in Figure 16,
a port refers to a component instantiation, thereby exposing
it for port mapping. In addition, a port is allowed to have a
directionality URI that indicates whether it is an input or
output port by referencing the appropriate term from the
Systems Biology Ontology (SBO).48 However, owing to the
reversibility of many biochemical reactions and the tight
integration of genetic components with their environment,
it is important to note that the directionality of a port is only
expected to document a designer’s intent and does not necessarily
reflect biological reality.

Figure 17 indicates that a port map refers to a component
instantiation and a port, thereby asserting that its component
instantiation is equivalent to that referenced by the port. When
components referenced by mapped component instantiations
have different identities, their respective data fields are to be
interpreted in combination. While this interpretation may be
ambiguous in the case of two sequence components with
different sequences, it is useful when one of the two sequence
components lacks a sequence, in which case a port mapping
effectively supplies a sequence to fill in a partial design.

Interactions. Interactions provide a qualitative basis for
asserting the intended function of a genetic design. The proposed
data model supports regulatory interactions, such as activation or
repression, and processes from the central dogma of biology, such
as transcription and translation. Other supported interaction types
include noncovalent binding between a small molecule and TF
and phosphorylation of a TF by an enzyme. Each interaction is a
nonempty set of participating component instantiations, each
having a specific role in the interaction. As illustrated in the UML
class diagram of Figure 18, each interaction must document its
type by referencing a SBO term.

Figure 17. UML diagram for the proposed Port Map class. Unlike a port,
a port map is identified rather than documented, as it simply represents a
connection between a component instantiation and a port.

Figure 15. UML diagram for the proposed Module Instantiation class.
A module instantiation is allowed to aggregate port maps to connect
any ports on the module that it instantiates.

Figure 14. UML diagram for the proposed Module class. Note that
data objects belonging to the Component Instantiation, Module
Instantiation, Interaction, and Port classes are owned by a given
module and no other object. Data objects belonging to the Model
class, however, may be aggregated by more than one module.

Figure 16. UML diagram for the proposed Port class. Note that a port
is documented to better describe a designer’s intent in exposing a
given component instantiation.

Figure 18. UML diagram for the proposed Interaction classes. The
Interaction class aggregates one or more objects of the Participation class,
which in turn reference objects of the Component Instantiation class.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7168



In the proposed data model, an interaction refers to the
involved components indirectly via the Participation class. A
participation has a role URI that is expected to also reference an
SBO term to specify the role of each component in an interaction.
For example, a protein component instantiation that participates
in a repression interaction has the role of a “repressor,” while the
role of a promoter DNA component instantiation in the same
interaction is “repressed.”
Models. Instead of introducing a new language for the

specification of mathematical models of biology, the proposed
data model leverages existing standards and refers to them
via the Model class. As shown in Figure 19, each object that
belongs to the Model class is required to refer by means of
URIs to a source model and ontology terms that document the

source model’s language, framework, and role. In this way, there
is minimal duplication of standardization efforts and users of
SBOL can specify the quantitative function of their modules in
a well-developed language of their choice. A module can refer
to more than one model since each model can encode different
levels of functional detail and play different roles in engineering

design. Examples of languages for mathematically modeling for
biology include SBML39 and CellML.40 Modeling frameworks
include ODEs, stochastic processes, and Boolean networks. Lastly,
examples of modeling roles include simulation, verification, and
synthesis (building composite models from simpler models). One
possible source of terms for modeling frameworks and roles is the
Mathematical Modeling Ontology (MAMO),49 though it is
currently in the early stages of its development.

Summary of Proposed Data Model. As summarized in
the UML class diagram shown in Figure 20, the proposed data
model expands the total number of classes in SBOL from four
to 17 (four of these classes, the Identified, Documented,
Collection, and Generic Component classes, are omitted from the
figure for clarity). Central to this data model are the Component
and Module classes, which are the basic exchangeable units for
composing descriptions of genetic structure and function. A
module composes components and other modules by means of
the Component Instantiation and Module Instantiation classes
and describes their function by aggregating objects belonging to
the Interaction and Model classes. A component that belongs to
the Sequence Component class refers to an object of the Sequence
class and composes its subcomponent instantiations along its
sequence via objects of the Sequence Annotation class. Once
components and modules have been composed using the various
Instantiation classes, their component instantiations can be
connected using the Port and Port Map classes.

■ AUTHOR INFORMATION

Corresponding Author
*Email: n.roehner@utah.edu.

Notes
The authors declare no competing financial interest.

Figure 20. UML diagram that summarizes the proposed data model. In this figure, “cI” stands for “componentInstantiation,” “subCI” stands for
“subComponentInstantiation,” and “subMI” stands for “subModuleInstantiation”.

Figure 19. UML diagram for the proposed Model class. A SBOL
model class object documents and refers to an external mathematical
model.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7169

mailto:n.roehner@utah.edu


■ ACKNOWLEDGMENTS

We thank all of the attendees (which include the authors) of
the 10th SBOL Workshop held at UC Berkeley, January 7−9,
2014, namely Nathan Hillson, Kevin Costa, Evan Appleton,
Leandro Watanabe, Jeff Johnson, Robert Sidney Cox, Joanna
Chen, Deepak Chandran, Cesar Rodriguez, David Lomelin,
Michal Galdzicki, Linh Huynh, Darren Platt, Jacqueline Quinn,
Chris Anderson, Aaron Berliner, and Mike Fero for their
valuable comments on this proposal during the workshop. We
also thank Douglas Densmore of Boston University and all
members of the SBOL Developers Group for their intellectual
contributions to the development of the SBOL standard. This
material is based upon work supported by the National Science
Foundation under Grant No. CCF-1218095. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

■ REFERENCES
(1) Galdzicki, M., et al. (2014) The Synthetic Biology Open
Language (SBOL) provides a community standard for communicating
designs in synthetic biology. Nat. Biotechnol. 32, 545−550.
(2) Villalobos, A., Ness, J., Gustafsson, C., Minshull, J., and
Govindarajan, S. (2006) Gene Designer: A synthetic biology tool for
constructing artificial DNA segments. BMC Bioinf. 7, 285.
(3) Chandran, D., Bergmann, F. T., and Sauro, H. M. (2009)
TinkerCell: Modular CAD tool for synthetic biology. J. Biol. Eng. 3, 19.
(4) Cai, Y., Wilson, M. L., and Peccoud, J. (2010) GenoCAD for
iGEM: A grammatical approach to the design of standard-compliant
constructs. Nucleic Acids Res. 38, 2637−2644.
(5) Beal, J.; Lu, T., and Weiss, R. (2011) Automatic compilation
from high-level biologically-oriented programming language to
genetic regulatory networks. PLoS One 6, DOI: 10.1371/journal.-
pone.0022490.
(6) Bilitchenko, L.; Liu, A.; Cheung, S.; Weeding, E.; Xia, B.; Leguia,
M.; Anderson, J. C., and Densmore, D. (2011) EugeneA domain
specific language for specifying and constraining synthetic biological
parts, devices, and systems. PLoS One 46, DOI: 10.1371/journal.-
pone.0018882.
(7) Galdzicki, M.; Rodriguez, C.; Chandran, D.; Sauro, H. M., and
Gennari, J. H. (2011) Standard Biological Parts Knowledgebase. PLoS
One 6, DOI: 10.1371/journal.pone.0017005.
(8) Misirli, G., Hallinan, J. S., Yu, T., Lawson, J. R., Wimalaratne, S.
M., Cooling, M. T., and Wipat, A. (2011) Model annotation for
synthetic biology: Automating model to nucleotide sequence
conversion. Bioinformatics 27, 973−979.
(9) Xia, B., Bhatia, S., Bubenheim, B., Dadgar, M., Densmore, D., and
Anderson, J. C. (2011) Developer’s and user’s guide to Clotho v2.0.
Methods Enzymol. 498, 97−135.
(10) Ham, T. S.; Dmytriv, Z.; Plahar, H.; Chen, J.; Hillson, N. J., and
Keasling, J. D. (2012) Design, implementation and practice of JBEI-
ICE: An open source biological part registry platform and tools.
Nucleic Acids Res. 40, DOI: 10.1093/nar/gks531.
(11) Hillson, N. J., Rosengarten, R. D., and Keasling, J. D. (2012) j5
DNA assembly design automation software. ACS Synth. Biol. 1, 14−21.
(12) Chen, J., Densmore, D., Ham, T. S., Keasling, J. D., and Hillson,
N. J. (2012) DeviceEditor visual biological CAD canvas. J. Biol. Eng. 6,
1.
(13) Madsen, C., Myers, C., Patterson, T., Roehner, N., Stevens, J.,
and Winstead, C. (2012) Design and test of genetic circuits using
iBioSim. IEEE Design Test 29, 32−39.
(14) Pearson, W. R., and Lipman, D. J. (1988) Improved tools for
biological sequence comparison. Proc. Natl. Acad. Sci. U.S.A. 85, 2444−
2448.
(15) Bilofsky, H. S., and Christian, B. (1988) The GenBank genetic
sequence data bank. Nucleic Acids Res. 16, 1861−1863.

(16) Densmore, D., and Hassoun, S. (2012) Design automation for
synthetic biological systems. IEEE Design Test Comput. 29, 7−20.
(17) Goler, J. BioJADE: A design and simulation tool for synthetic
biological systems. M.Sc. thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 2004.
(18) Rodrigo, G., Carrera, J., and Jaramillo, A. (2007) Asmparts:
Assembly of biological model parts. Syst. Synth. Biol. 1, 167−170.
(19) Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M.,
Kikuchi, N., and Kitano, H. (2008) CellDesigner 3.5: A versatile
modeling tool for biochemical networks. Proc. IEEE 96, 1254−1265.
(20) Hill, A. D., Tomshine, J. R., Weeding, E. M., Sotirpoulos, V., and
Kaznessis, Y. N. (2008) SynBioSS: The synthetic biology modeling
suite. Bioinformatics 24, 2551−2553.
(21) Mirschel, S., Steinmetz, K., Rempel, M., Ginkel, M., and Gilles,
E. D. (2009) ProMoT: Modular modeling for systems biology.
Bioinformatics 25, 687−689.
(22) Richardson, S. M., Wheelan, S. J., Yarrington, R. M., and Boeke,
J. D. (2006) GeneDesign: Rapid, automated design of multikilobase
synthetic genes. Genome Res. 16, 550−556.
(23) Wu, G., Bashir-Bello, N., and Freeland, S. J. (2006) The
Synthetic Gene Designer: A flexible web platform to explore sequence
manipulation for heterologous expression. Protein Expression Purif. 47,
441−445.
(24) Umesh, P., Naveen, F., Rao, C., and Nair, A. (2010)
Programming languages for synthetic biology. Syst. Synth. Biol. 4,
265−269.
(25) Roehner, N., and Myers, C. J. (2014) A methodology to
annotate Systems Biology Markup Language Models with the
Synthetic Biology Open Language. ACS Synth. Biol. 3, 57−66.
(26) Pedersen, M., and Phillips, A. (2009) Towards programming
languages for genetic engineering of living cells. J. R. Soc. Interface 6,
S437−S450.
(27) Yaman, F., Bhatia, S., Adler, A., Densmore, D., and Beal, J.
(2012) Automated selection of synthetic biology parts for genetic
regulatory networks. ACS Synth. Biol. 1, 332−344.
(28) Huynh, L., Tsoukalas, A., Koppe, M., and Tagkopoulos, I.
(2013) SBROME: A scalable optimization and module matching
framework for automated biosystems design. ACS Synth. Biol. 2, 1073−
1089.
(29) Roehner, N., and Myers, C. J. (2014) Directed acyclic graph-
based technology mapping of genetic circuit models. ACS Synth. Biol.,
DOI: 10.1021/sb400135t.
(30) Galdzicki, M., et al. (2012) Synthetic Biology Open Language
(SBOL) Version 1.1.0. BBF RFC 87, DOI: 1721.1/73909.
(31) Quinn, J., Beal, J., Bhatia, S., Cai, P., Chen, J., Clancy, K.,
Hillson, N. J., Galdzicki, M., Maheshwari, A., Umesh, P., Pocock, M.,
Rodriguez, C., Stan, G.-B., and Endy, D. (2013) Synthetic Biology Open
Language Visual (SBOL Visual), Version 1.0.0. BBF RFC 93,
DOI: 1721.1/78249.
(32) Gardner, T. S., Cantor, C. R., and Collins, J. J. (2013)
Construction of a genetic toggle switch in Escherichia coli. Nature 403,
339−342.
(33) Bhatia, S., and Densmore, D. (2013) Pigeon: A design visualizer
for synthetic biology. ACS Synth. Biol. 2, 348−350.
(34) Booch, G.; Rumbaugh, J., and Jacobson, I. (2005) The Unified
Modeling Language User Guide, 2nd ed.; Addison-Wesley, Boston, MA.
(35) Berners-Lee, T.; Fielding, R., Masinter, L. Uniform Resource
Identifier (URI): Generic syntax. IETF RFC 3986, 2005; http://tools.
ietf.org/html/rfc3986, accessed on May 31, 2014.
(36) Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L.,
Durbin, R., and Ashburner, M. (2005) The Sequence Ontology: A tool
for the unification of genome annotations. Genome Biol. 6, R44.
(37) Lord, P., and Stevens, R. (2010) Adding a little reality to
building ontologies for biology. PLoS One 5, e12258 DOI: 10.1371/
journal.pone.0012258.
(38) Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E.,
and Mello, C. C. (1998) Potent and specific genetic interference by
double-stranded RNA in Caenorhabditis elegans. Nature 391, 806−811.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7170

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986


(39) Hucka, M., et al. (2003) The Systems Biology Markup Language
(SBML): A medium for representation and exchange of biochemical
network models. Bioinformatics 19, 524−531.
(40) Hedley, W. J., Nelson, M. R., Bellivant, D. P., and Nielsen, P. F.
(2001) A short introduction to CellML. Philos. Trans. R. Soc. London A
359, 1073−1089.
(41) MATLAB, version 8.3 (R2014a). (2014) The MathWorks Inc.:
Natick, MA.
(42) Beal, J.; Wagner, T. E.; Kitada, T.; Krivoy, A.; Azizgolshani, O.;
Parker, J. M.; Densmore, D., Weiss, R. Model-driven engineering of
gene expression from RNA replicons. Personal communication, on
May 29, 2014.
(43) Frolov, I., Hardy, R., and Rice, C. M. (2001) Cis-acting RNA
elements at the 5′ end of Sindbis virus genome RNA regulate minus-
and plus-strand RNA synthesis. RNA 7, 1638−1651.
(44) Kiani, S., Beal, J., Ebrahimkhani, M. R., Huh, J., Hall, R. N., Xie,
Z., Li, Y., and Weiss, R. (2014) CRISPR transcriptional repression
devices and layered circuits in mammalian cells. Nat. Methods,
DOI: 10.1038/NMETH.2969.
(45) Lassila, O., Swick, R. RDF/XML syntax specification (revised).
W3C Recommendation, 2004; http://www.w3.org/TR/rdf-syntax-
grammar/, accessed on May 21, 2014.
(46) Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B.,
Kale, N., Muthukrishnan, V., Owen, G., Turner, S., Williams, M., and
Steinbeck, C. (2013) The ChEBI reference database and ontology for
biologically relevant chemistry: Enhancements for 2013. Nucleic Acids
Res. 41, D456−D463.
(47) Cornish-Bowden, A. (1985) Nomenclature for incompletely
specified bases in nucleic acid sequences: Recommendations 1984.
Nucleic Acids Res. 13, 3021−3030.
(48) Juty, N.; and Novere, N. (2013) Encyclopedia of Systems Biology.
Springer, New York, pp 2063−2063.
(49) Waltemath, D.; Zhukova, A.; Swat, M.; Lefranc, Y.; Vik, J.-O.,
and Novere, N. L. Mathematical Modelling Ontology. Available online:
http://sourceforge.net/projects/mamo-ontology/, accessed on May
31, 2014.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500176h | ACS Synth. Biol. 2015, 4, 57−7171

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://sourceforge.net/projects/mamo-ontology/

